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Surface-wave diffraction by a periodic row 
of submerged ducts 

By JOHN W. MILES 
Institute of Geophysics and Planetary Physics, University of California, San Diego 

(Received 24 May 1982 and in revised form 24 September 1982) 

The diffraction of a gravity wave of length A that is obliquely incident upon, and 
the radiation from, a periodic row of vertical circular ducts of radii a and horizontal 
spacing b with mouths a t  a distance h below the free surface of a deep acean are 
determined through integral-equation and variational formulations. Numerical 
results for the reflection coefficient, the pressure-amplification factor (the ratio of the 
complex amplitude of the wave-induced pressure in the depths of the duct to that 
of the incident wave a t  the level of the mouths), and the radiation impedance (the 
real and imaginary parts of which are measures of the radiation damping and the 
virtual mass or stiffness of the fluid cxternal to the ducts) are presented as functions 
of a / A  with a l b  and a lh  as parameters for the special case of normal incidence with 
A > b (which implies that the crests of the scattered waves are parallel to the midplane 
of the ducts). These results, which complement those of Simon (1981) for a single duct, 
are of practical interest for wave-power absorption. 

1. Introduction 
I consider here (i) the diffraction of a surface wave of angular frequency w and length 

A = 27rg/w2 that  is obliquely incident upon, and (ii) the radiation of such a wave from, 
a row of vertical circular ducts of radii a and horizontal (periodic) spacing b with open 
mouths at depth h (figure I). The problem of an isolated duct has been considered 
by Simon (1981), Thomas (198l)t  and Miles ( 1 9 8 2 ~ ) .  Measurements for a duct in both 
‘narrow’ ( b  < A )  and ‘wide’ ( b  b A )  wave tanks have been made by Knott & Flower 
(1980). These papers also describe the practical significance of the problem; see 
Lighthill (1979) for further background on the duct problem and Evans (1981) for 
a review of the general problem of wave-power absorption. The diffraction problem 
for h < 0 (duct penetrates free surface) is equivalent to that for acoustical diffraction 
by a periodic grating of circular cylinders, which has a long history and for which 
rather extensive analytical results are available (Twersky 1962). It should be 
emphasized, however, that  the limit h 10 is singular and that the primary reason for 
considering h < 0 in the present context is that the solution of that  simpler problem 
is an essential component of the solution for h > 0. 

I ultimately assume normal incidence and b < A,  for which the problem is 
equivalent to  that of a single duct midway between the walls of a deep wave tank 
of width b in which only the dominant mode is propagated. The scattered field then 
comprises only the transmitted and reflected counterparts of the incident wave, and 

t Thomas assumes finite depth, which implies a discrete spectrum for the vertical wavenumber, 
whereas the spectrum for the deep-water problem comprises a single discrete eigenvalue for the 
surface wave and a continuous spectrum for the non-propagated internal waves. The deep-water 
approximation appears to be adequate for practical configurations. 
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FIGURE 1. Plan and elevation of periodic row of circular ducts in deep ocean. 

my results complement those of Simon and are comparable with the measurements 
in Knott & Flower’s narrow tank. The restriction b < h precludes the direct transition 
between the present results and those of Simon; however, Simon’s results may be 
obtained from the present results by retaining only the n = 0 terms in (2.15) and (2.18) 
below and renormalizing the subsequent calculations (see 5 8). 

I begin the solution of the diffraction problem in 52 by using Green’s theorem to 
express the solution in terms of the pressure jumps across the walls of the ducts. I 
then introduce Havelock’s (1929) Fourier transformation with respect to the vertical 
coordinate in 53 and construct the Green function in 54.f The formulation to this 

t The procedure adopted in $12 and 4 follows that for the simpler (no z-dependence) problem 
of acoustical scattering (cf. Twersky 1962) ; see also Falnes t Budal(l982). An alternative procedure 
for b % h would be to perturb the solution for a single duct by invoking the Born approximation 
(or hierarchy of approximations) for multiple scattering by a widely spaced array of scatters; cf. 
Simon (1982) and references therein. 
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point is valid for arbitrary angle of incidence and duct spacing. Practical computation 
requires further simplification, and in $5  I impose the restrictions of normal incidence 
and b < A. (The generalization of $55-8 for oblique incidence and arbitrary spacing 
is straightforward in principle but complicated in detail.) I then separate the solution 
into symmetric and antisymmetric (with respect to a transverse plane through the 
axes of the ducts) components and construct a pair of real integral equations for the 
corresponding components of the pressure jump. In  $56 (h  < 0) and 7 (h  > 0) I 
construct variational approximations to a pair of real parameters that  represent the 
symmetric and antisymmetric components of the solution and from which the 
complex reflexion and transmission coefficients may be calculated. In  58 I calculate 
the pressure-amplification factor for the duct, defined as the ratio of the complex 
amplitude of the wave-induced pressure in the depths of the duct to that of the 
incident wave at the centre of the mouth. 

Finally, in $9 I formulate the radiation problem for a duct in a wave tank (or, 
equivalently, a periodic row of ducts for which the forcing motions are in phase) 
wherein the motion is excited by an oscillating piston in the depths of the duct. The 
solution then is symmetric but nevertheless is governed by a pair of real integral 
equations (cf. Miles 1982a). One of these integral equations is equivalent to that for 
the symmetric scattering problem; the other has a similar structure. The parameters 
of principal interest for the radiation problem are the amplitude of the radiated wave 
and the radiation impedance (the ratio of the complex amplitude of the pressure to 
that of the velocity in the depths of the duct less the corresponding ratio for the 
column of water in r < a ,  regarded independently of the water in r > a) .  Both the 
amplitude of the radiated wave and the radiation resistance may be expressed in 
terms of the pressure-amplification factor for the diffraction problem through 
generalizations of Simon’s (1981) reciprocal theorems for the single duct. The 
procedure used by Simon to obtain the radiation reactance is not applicable in the 
present problem, however, and I determine i t  by solving the second of the 
aforementioned integral equations. 

2. The diffraction problem 
The deep-water gravity wave described by the velocity potential 

}, r = (x, y)  = r(cos 8, sin 6), (2.1 a,b) 

where A is the complex amplitude of the free-surface displacement, w is the angular 
frequency, 

(2.2a, b )  

and Os is the angle of incidence, is incident upon a periodic row of semi-infinite circular 
ducts (figure 1) of radii a with axes a t  x = 0 and y = nb (n = 0, -t 1, + 2 , .  . .) and open 
mouths at z = h in a semi-infinite ocean (0 < z <a). The resulting perturbation 
pressure may be posed in the form 

(2.3) 

where p is the density (but p appears as a radius in the subsequent development), 
and the dimensionless, complex pressure 9 satisfies Laplace’s equation, 

$(r, z ,  t )  = - 9 Re {iA eg(ut-K.r)-KL 
w 

27r w2 
K = - = - K = K ( C O S ~ ~ ,  sin 6i), 

9 ’  

p(r, z ,  t )  = pg Re { A  eiWt vW, 41, 

VZ@ = 0. (2.4) 

6-2 
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The boundary conditions a t  the free surface, the (infinitely remote) bottom and the 
walls of the ducts imply 

( a , + K ) @  = 0 ( z  = O ) ,  lim a,@ = 0, 
z+m 

(2.5a, b )  

a r n + = 0  ( r n = a ,  n = 0 , + 1 , + 2  ,... ), (2.6) 

(2.7a, b )  where rn = r-nb = rn(cos6,,sin8,), b = ( 0 , b ) .  

It follows from (2.1) and (2.3) that  the incident wave is described by 

1 (2.8) per, ; 6 , )  = e-iK.r-Kz = e - i ~ ( ~  cos Bi+y sin B i ) - K z  

which satisfies (2.4) and (2.5a,b). Substituting r = r,+nb into (2.8), we obtain 

@ = e - inPe- i~ . rn -Kz  , p = K.b = Kb sin oi, (2.9a,b) 

which exhibits the interduct phase shift p associated with the inclination of the 
incident wave crests to the midplane of the ducts. 

The scattered wave may be expressed in terms of the (dimensionless) pressure 
jumps across the duct walls, 

X n  +lIrn=a--+lrn-a+ (2.10) 

(note that x n  = 0 in 0 < z < h, in which interval @ must be continuous across r = a ) ,  
with the aid of Green's second identity, 

(2.11) 

V2G(r,z;p,C) = - W - P ) W - C ) ,  (2.12) 

J J J (Gv2+- W G )  dtdydC = ss (+ a, G- G a, $1 dS, 

where the Green function G satisfies 

the counterparts of (2.5a, b ) ,  and appropriate finiteness and radiation conditions as 
r --t co ; 6 is Dirac's delta function ; the semi-infinite domain of integration is bounded 
externally by C = 0 and internally by the duct walls; the Laplacian V2 operates on 

p = (& y) = p(cosa, sina) (2.13) 

and 6 in the integrands in (2.11) and on r and z in (2.12); v is the inwardly directed 
normal to the bounding surface, and dS is an element of that  surface. It follows from 

(2.14) 

where x(6, z )  is the pressure jump across the wall of the central duct. Substituting 
(2.14) into (2.11) and invoking (2.4), (2.12) and the corresponding boundary 
conditions, we obtain the total (incident plus scattered) field in the form 

+ =  @-I X ( a , C ) d , ~ e - i n P G ( r , z ; p + n b , C ) d S ,  (2.15) 
D n 

where 
(2.16) 

the summation is over -a to  00 (as are all subsequent summations except as 
explicitly indicated), and i t  is implicit that  p = a after carrying out the differentiation 
with respect to p. 

It follows from (2.9) and (2.15) that  exp(inp) @ ( y - n b )  = +(y) for n = 0, f 1 ... 
(this statement anticipates that G(r, z ;  p, 5) is a function of r-p, rather than r and 
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p separately); accordingly, it suffices to impose the boundary condition (2.6) on the 
central (n = 0) duct.t This yields the integral equation 

r 

where 
K = - 8 8 C. ecinp G(r, z ; p + nb, c) , 

" n  

(2.17) 

(2.18) 

and it is implicit that r = p = a after carrying out the differentiations with respect 
to r and p. We anticipate that (2.17) can be separated into a pair of uncoupled integral 
equations governing the symmetric and antisymmetric components of x : 

where, here and subsequently, the upper/lower choice of alternative signs corresponds 
to the symmetric/antisymmetric component. 

3. Fourier transformation 
The functions 

K 
z k  (%) = COS kz - - sin kz 

k 

form a complet,e set for the interval 0 < < 00 with the end conditions (2.5a, b) ,  which 
imply the discrete spectrum k = & i~ (these eigenvalues correspond to surface waves) 
and the continuous spectrum 0 < k < OC). The corresponding Fourier-transform pair 
is given by (cf. Havelock 1929) 

which provides the basis for the solution of either (2.4) or (2.12) and (2.5) through 
separation of variables. Note that z k  and F are even functions of k and that 

ZiK(z) = Z-,,(z) = e c K Z .  (3.4) 

4. Green function 
Multiplying (2.12) through by z k ( z ) ,  integrating from z = 0 to z = 00 as in (3.2), 

integrating zkai  G by parts, invoking the boundary conditions (2.5), and introducing 

G(r; P; k )  {zk(<)>-lF{G(r> 2; P, C)>, (4.1) 

(4.2) 
we obtain ( V 2 - k 2 ) G ( r ; p ; k )  = -&(r-p), 

wherein the Laplacian V 2  operates on r. The solution of (4.2), subject to finiteness 
and radiation conditions as r +oc), is given by 

G(r; p ;  k )  = (27r-1K0(klr- pi) (Re k 2 0) (4.3a) 

= -$iH$Q(~lr-pl) ( k  = i ~ ) ,  (4.36) 

t If (2.6) were invoked a t  the Nth duct the counterpart of (2.17) could be multiplied through 
by exp (iN/3), (2.9) invoked, and the summation index in (2.18) replaced by n - N  to recover (2.17). 
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where KO is a modified Bessel function and Hiz)  is a Hankel function. Note that the 
choice k = i ~ ,  rather than k = - i ~ ,  in (4.3b) is dictated by the radiation condition 
at r = 00 in conjunction with the time dependence cxp ( iwt ) .  

The explicit representation of the kernel K ,  obtained through the substitution of 
the inverse transform of (4.1) into (2.18), requires that K, (k ( r -p -nb( )  be expressed 
as a function of r ,  8, p and a. Remarking that r - p - n b  = rn-p ,  invoking the 
addition theorems (Watson 1945, $ 11.3(8)) 

in which p and r ,  must be reversed if p > r,, and (for a triangle with sides r ,  r ,  and 

Km(krn) exp {im(+n sgn n + O n ) }  In1 b )  

= Z ~ l ( k r ) ~ i + m ( l n l  kb) exp{iZ(gn sgnn-8)) ( r  < In1 b ) ,  (4.5) 
1 

using (4.4) for n = 0, and combining (4.4) and (4.5) for n = 1,  f 2, .  . . , we obtain 

K(8;a;  k )  ( Z , ( < ) } - ' F K ( B , z ; a ,  6) 

- - -Jc" [x IL(ka) Kk(ka)  e i m ( 0 - a ) + 2 x  2 Ii(ka)Ik(ka) e-i(le+ma) 

2n m l m  

1 
W 

x Z K,+,(nkb) cos { ( I  - m )  $7 - np} 
n=1 

(4.6) 

This representation may be separated into the sum of symmetrical and antisym- 
metrical components, which are respectively even and odd functions of each of in + 8 
and $n+a, as anticipated in $2. 

The calculation of the scattered field is facilitated by a plane-wave (where wave now 
implies either a propagated or a non-propagated wave) representation of 

x exp ( - inp) G ( r ,  z ; p + nb, 5) in preference to the cylindrical wave representation 

implied by (4.3)-(4.5). This may be achieved with the aid of the integral representation 
(Magnus, Oberhettinger & Soni 1966, p. 86) 

n 

(4.7) 

Substituting (4.7) into (4.3a) after replacing x and y by k ( x - c (  and k(y-nb-q) ,  
effecting the change of variable T = k sinht with the provisional restriction k > 0, 
multiplying the result by exp ( - inp) ,  and summing over n, we obtain 

Z ecinpG(r; p + n b ;  k)  
n 

where (after substituting /3 = K b  sin &) 

inb(r  + K sin Si) , C ( T )  = e- 
n 

(4.9) 
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Invoking the transformation (which is equivalent to Fourier's theorem) 

277 
Z(7) = -X 8(7 -vm) ,  v, = Bnmb-l-~ sinei, (4.10a, b )  

b m  

and carrying out the integration with respect to 7 in (4.8), we obtain 

X e-inflG(r; p +  nb; k )  = (2b)-l X (k2+ vk)" exp{ - (k2+ v",)"Ix- 61 +iv,(y-q)}. 
n m 

(4.11) 

The inverse transform F-l{(4.l1)Zk(c)}, as given by (4.1) and (3.3), comprises a 
continuous spectrum (0 < k < 00) of trapped (by the periodic row of ducts) waves and 
a discrete spectrum (k = i ~ )  of an infinite number of trapped waves, for which 
IvmI > K, plus a finite number of propagated waves, for which (vmI < K ;  only the latter 
appear in the scattered field. Setting k = i~ in (4.11), introducing 

mh 
sin8, = -- - - sinei-- Vm . 

K b 
(4.12) 

(note that the 8, defined by (2.7) do not appear in the subsequent development), 
choosing (v: - K ~ ) ;  = i~ cos Om (in satisfaction of the radiation condition at x = f oo), 
and invoking (3.3) and (3.4), we obtain 

Z e-inflG(r,z;p+nb,LJ 
n 

- 2~ ecKZ X G( r ; p + nb ; i ~ )  ecK5 
n 

( 4 . 1 3 ~ )  

N e-K(z+a X ( ib  C O S ~ , ) - ~  exp[-iK{I~-[I cos8,+(y-q) sin@,}] (Ix-51 -, a), 
m 

(4.13 b )  

= X (ib cos em)-l I+P 
m n-8, 

( 4 . 1 3 ~ )  

where @ and p* are given by (2.8) and its complex conjugate, and the summations 
in (4.13 b ,  c) are only over those m for which Om is real. 

If, as we now and subsequently assume, b ( l  + lsin Oil) < A ,  only the dominant 
(m = 0) mode is propagated, and the substitution of ( 4 . 1 3 ~ )  into (2.15) yields 

where 

(4.14) 

(r, z)/(p, 6)  are suppressed in (4.14)/(4.15), and (as in $2) p = a after carrying out the 
partial differentiations in (4.15). 
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5. Normal incidence 
The subsequent development is restricted to normal incidence (0, = /3 = 0) and 

b < h (so that only the dominant mode is propagated). K, as given by (4.6), then may 
be reduced to 

+z C Ii (ka)  Ih(ku) S,+,(kb) e-i(Ls+ma) cosa(Z-m) n , (5.1) 
l m  1 

where 

is a Schlomilch series (see appendix A).? Combining the terms of corresponding 
positive and negative indices, we obtain the alternative form 

K = -- e m I h ( k ~ ) K h ( k ~ )  COSWL(B-E) 
2n k 2 [  m=Q a: 

+ X,- , (kb)  cos (I0 - ma) cos $(Z + m) .}I, (5 .3 )  

where eo = 1 and en = 2 (n  = 1,2 ,  ...). The corresponding reductions of (4.11) and 
(4.15) yield (cf. Schwinger & Saxon 1968; Srokosz 1980) 

I im +- c c e,e,&(ka)I&(ka) Xl,,(kb) cos(ZO+ma) cos~(E-m)n  
2 1=o m=O 

a! 

C G(r;p+nb;k) = (2b)-l  C ~ m ( k 2 + v ~ ) - ~ e x p { - ( k 2 + u ~ ) ~ ~ ~ - ~ ~ }  c o s { v m ( y - ~ ) }  
n m=o 

(vm = 2nm/b), (5.4) 

(5 .5a)  

We subsequently use (5 .3)  to calculate 

ffs, a Re Ks, a = F-l(ReKs,, aZ,(C)>> (5.6) 

where the subscript s/a signifies the symmetrical/antisymmetrical component, 
defined as in (2.19), but use (2.18) and (5.4) to calculate (note that the contribution 
of the continuous spectrum of KZ,(C) to its inverse transform K is real) 

ImK,,. = -22~e-~(~+c)d ,d ,  I m C  G(r;p+nb;c) (5.7a) 
n 

(5.7b) 

t The greatly increased numerical dificulty of the solution for /3 += 0 stems principally from the 
appearance of the generalized Schlomilch series S%s((z, /I), obtained by inserting cos np, sin n/I into 
( 5 . 2 ) ,  in the generalization of (5.1). 
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Substituting (5.6), (5.7) and 

into the even and odd components of the integral equation (2.17), normalizing the 
symmetric and antisymmetric components of x according to  

x,(e,z) = +(T+R+ l)fs(o, 21, xa(8, 2) = &(T-R+ l)fa(e,  z ) ,  ( 5 . 9 ~ ~  b) 

and invoking (5.5), we obtain the reduced integral equations 

ID H,(8, z ;  a, 5)  f s (a ,  5)dS = K sin (KU cos 8) cos 8 e-Kz, ( 5 . 1 0 ~ )  

JD Ha(8, z ;  a, 5) fala, 5) dS = K cos (KU cos 8) cos8 e - K z ,  (5.10b) 

where z > h is implicit. 
Combining (5.5) and (5.9), we obtain 

~ ( T + R + l ) = ~ ~ D ~ s ( a , ~ ) s ~ n ( ~ a c o s a ) c o s a e ~ K ~ d ~ ~ - ,  T + R - 1  1 (5.11a) 

x, 
T-R-1 1 

i (T-R+ 1> = 
J D  fa(a,  5) cos (KU cosa) cosae-KcdS = - (5.1 1 b) 

Xa 
for the determination of R and T.  Note that (5.6), (5.10) and (5.11) imply that fs,a 

and Xs, a are real. Expressing T and R in terms of X ,  and X,, we obtain (after some 
reduction) 

IT1 = ICOS ( T S - ~ ~ ) I >  IRI = Isin (78-7a)lj 

where 
a rgT = +n+argR = 7,+7,, 

7s,a = tanp1 (l /Xs,a).  

(5.12a, 6 ,  c) 

(5.12d) 

We remark that (5 .12~-c)  imply IRI2 = 1 and IT+RI = 1 ,  as otherwise may be 
inferred directly from conservation of energy. 

integrating over the duct, dividing the 
results through by the square of the resulting integral on the left, and invoking 
(5.11 a ,  b) ,  we obtain the Schwinger-type variational representations 

Multiplying (5.10u, b)  through by f,, 

( 5 . 1 3 ~ ~ )  

bJD j D f a ( 8 , z ) H a ( 8 , z ; a ,  [) fa(a,Y)dedzdadc 
(5.13b) F’ xa = 

K2 { S, fa(O, z )  cos ( K a  cos 0) cos 8 e - K 2  de dz 

which are stationary with respect to variations of f,, a ( ~ ,  z )  about the respective 
solutions of the integral equations (5.10a, b )  and invariant under scale transformations 
off,, a. 
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6. Surface-penetrating cylinders 
If h < 0 the present problem is equivalent to that for an  acoustical grating of 

circular cylinders or a circular piling in a wave tank. The contribution of the 
continuous spectrum 0 < k < 00 then vanishes, and f,, a admit the Fourier represen- 
tations (both f, and fa must be even functions of 0 by virtue of symmetry with 
respect to y = 0, which is a consequence of normal incidence) 

N 

n-0 
f,(z, 8 )  = ecKZ C A,, cos 2n8, 

fa@, 8) = cKZ C A,,+, cos (2n+ 1 )  8, (6.1u, b )  

where, in general, N = co for an exact solution (but N for the truncated expansion 
of fa need not be the same as that for f,). Note that A,, A,, A,, A,, . . . are measures 
of the monopole, dipole, quadrupole, octupole, . . . strengths of the grating. 

Substituting (6.10) and H ,  = ~ K H ,  exp{--(z+lJ} into (5.13a), carrying out the 
integrations with respect to  z and g, and invoking the identity 

N 

n-0 

00 

sin (KU cos 0)  cos 8 = C en( - ),-l J;,(KU) cos 2n8 (6.2)  
12-0 

to evaluate the integral with respect to 8 in the denominator of (5.13a), we obtain 

N N  

C 1 X2rn72nB2mB2n 
xs = rn=o n-o 2 > Bn AnJk(Ka), (6.3a, b )  

{ n-0 ( - ) n ~ 2 n }  

where, after suppressing the subscript on H, 

X, ,  = b { 2 n 2 ~ J & ( ~ a )  J k ( ~ a ) } - l  jrjr H ( 8 ; a ; i ~ )  cosm8 cosnadad8. 

(6.4) 

Note that only the symmetrical/antisymmetrical component of H = H, + Ha con- 
tributes to the integral in (6.4) if m and n are both even/odd. 

The requirement that  X ,  be stationary with respect to variations of each of the 
A,, yields N +  1 linear algebraic equations, which may be inverted to obtain 

where A, is, in effect, a Lagrange multiplier (the variational representation of X ,  is 
homogeneous in the B,, and the variational problem may be reformulated to require 
the numerator of ( 6 . 3 ~ )  t o  be stationary with the side condition that the denominator 
be fixed), and the Ymn are the elements of the inverse matrix 

The corresponding approximation to X ,  is given by 

m+n y 
m-o n-0 
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The variational principle implies that the error in this approximation decreases 
monotonically with increasing N .  

The constant A, may be determined by combining (6.1 a ) ,  (6.3b) and (6.5) in (5.11 a )  
and then invoking (6.7). The end result is 

A, = - b/na. (6.8) 

The corresponding results for A,,,, and X ,  may be obtained by replacing the even 
subscripts 2m and 2n by the odd subscripts 2m+ 1 and 2n+ 1 in ( 6 . 3 ~ )  and (6.5)-(6.7) 
and replacing A, by A, = + b / m .  

Substituting H = R e K  from (5.3) into (6.4), carrying out the integrations with 
respect to  a and 0,  and expressing the modified Bessel functions I ,  and K,  in terms 
of the Bessel functions J ,  and Y,, we obtain 

X m n  = - A a m n  Cn + ( - )'(m-n) ( D m + n  + Drn-n)}, (6.9) 

where S,, is the Kronecker delta, 

,U = ~ b / 2 n  = b / A ,  (6.10) 

(6.11) 

a, 

D,, s D, , (p )  = -77 Z Y2,(27rmp) s ( - ) "  Re#,,( -2inp) .  (6.12) 

Note that Co = O ( ( K U ) - ~ }  and C, = O { ( K U ) - ~ ~ }  ( n  2 1 )  as KU 10, and that m and n are 
either both even or both odd. The angles 8; are tabulated by Morse & Feshbach (1953, 
table XIV). The Schlomilch series S,(z) is considered further in appendix A. 

Substituting (6.9) into (6.6), invoking (6.7) and its counterpart for X,, and choosing 
N = 1,  we obtain the second approximations 

m-1 

(6.13 a )  

The corresponding first approximations ( N  = 0) 

X ,  = - ,~(Co+2Do) Xi ' ) ,  X ,  = - p ( C l + D o + D 2 )  Xi1) ( 6 . 1 4 ~ , b )  

are plotted in figures 2(a ,  b ) .  The first approximation to  (RI2 = 1 --IT\,, as deter- 
mined from (5.12), is plotted in figure 3. The ratios XifblXi?! are plotted in figure 4. 

It is evident from figure 4 that the first approximations Xiti are likely to be 
adequate for b < +A and moderate values of 2alb (which is likely to be small in 
practical configurations). That Xiz)/Xil) is larger than Xi2)/Xi1) (in the parametric 
range considered here) is a consequence of the fact that  the ratio of the quadrupole 
to monopole strengths is O ( K , ~ )  as KU 10, whereas the ratio of the octupole to dipole 
strengths is O(lc4a4); see comment following (6.12). Inspection of the known results 
for diffraction by a circular cylinder suggests that the error in the second approxi- 
mations Xi: i  is less than 1 yo for KU < 2 provided that K b  is not too close to 277 (note 
that, from the geometry of the problem, KU < i K b ) .  
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FIQURE 2 .  (a) - X g ) / 2 X , ,  as determined from (6.14a). Those segments for which KU > 0 5  (for which 
the approximation X ,  = X F )  may be inadequate) are dashed. The curve for 2a/b = 06  and ~a < 0.5 
coincides (within the accuracy of the plot) with the curve for 2a/b = 0.2. (b) X 2 ) / X * ,  as determined 
from (6.14b). Those segments for which KU > 0.5 are dashed (but note that the approximation 
X ,  = X F )  is better than X ,  = X F )  and is likely to be adequat,e for ~a < 1). 
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IR IP 

blX 
FIGURE 3. IRI2 = 1 - /TI2 for h = 0, as determined from (5.12) using the approximations 

Xg)&. Those segments for which ica > 0 5  are dashed. 

The limiting values of X ,  and X ,  as a 10 with K and b fixed are given by 

X , + X o o + - 2 X * ,  X a + X l l + X *  (aJ.0, h = O ) ,  (6.15a, b)  

x, = b/nKa2 (6.16) where 

is a convenient reference value. The limit ( 6 . 1 5 ~ )  is also valid for KU 10 with a / b  fixed, 
but the corresponding limit of X ,  depends on a/b. The second approximation (6.14b) 
vields 
.J 

( K ~ J O ,  h = 0). (6.17) 
0 .0549(2~/b)~  Xp) -+ X ,  { 1 - 0.8225(2a/b)2 - 

1 - 0.3 1 7 9 ( 2 ~ / b ) ~  
The results in this section, which are basic for the subsequent development, are 

equivalent to those obtained by Twersky (1962), although he gives no numerical 
results. 

7. Variational approximations for ducts 

form 
Returning to the original problem (h  > 0), we posit the counterparts of (6.1) in the 

N N 

n-0 n=o 
fs(z, 8) = I: A z n f i n ( ~ )  cos 2n0, fa(., 0) = Z A2n+1,,f2n+1(~) cos (2n+ 1 )  8, 

(7.la, b)  
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FIGURE 
blh 

4. X?)/rip) and X F ) / X c ) ,  as determined from (6.13a, b )  and (6. 
for 2 a / b  = 0 2  (-), 04 (-.--), 0.6 (---) and 08  (. . .). 

where c f n ( x ) }  is a suitable set of functions (see below). Proceeding as in $6, we obtain 
N N  
E C X 2 m , 2 n A 2 m x 2 n  

x s  = m=o n=o , xn = A n F n ( i ~ )  J ~ ( K u )  ( 7 . 2 a ,  b )  

{ n=o ( - ) n x 2 n }  

as the counterparts of ( 6 . 3 a ,  b ) ,  where 

Xg!, is given by (6.9), 

- i IA(ka)  Ik (ka)  (( - ) i ( m - n )  S,+,(kb) + ( - )$(m+n) Sm-n(kb)}, ( 7 . 5 )  

and m and n are either both even or both odd in ( 7 . 5 ) .  
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The counterparts of (6.5)-(6.8), which follow from the variational principle, are 
N 

n-0 
A ,mFzm( iK)J ;m(Ka)  =-(2gKU)-'b E ( - ) n  Y2m,2n, 17.6) 

[Ym, z n I =  [ X z m ,  znl-l, (7.7) 

whilst those for A,,+, and X, may be obtained by replacing the even subscripts 2m 
and 2n by the odd subscripts 2m+ 1 and 2n+ 1 in (7.2~) and (7.6)-(7.8) and changing 
the sign of the right-hand side of (7.6). 

The preceding results may be generalized, to  allow for more flexibility in the choice 
of trial functions, by replacing A2JZn in (7.1 a )  by A!&JY, where cfy(z)} is a suitable 
set of trial functions, and replacing the single summation over n by a double 
summation over n, u. X m n  and Ymn in (7.7) and (7.8) then must be replaced by Xg, 
and Y g n ,  where Xg, is obtained by replacing Fm and Fn in (7.4) by Fp and Fv, the 
matrices in (7.7) are then fourth order, and the double summation in (7.8) is replaced 
by a quadruple summation over m, n, p, v. 

It remains to choose the f n ( z ) ,  or, as proves expedient, the corresponding functions 
defined by the transformation (Simon 1981) 

. fn ( z )  = ( a z + K ) f n ( Z ) ,  (7.9) 

the inverse of which, subject to the end conditionf,(h) = 0 (the pressure must be 
continuous a t  z = h) ,  is 

f n ( z )  = 1 e-"'z--"'jn(c) dc, (7.10) 

and under which (7.3) goes over to 

(7.11) 

Guided by the results for a deeply submerged, isolated duct (Miles 1982b) and 
invoking convenient normalizations, we choose 

where z* = (z-h)/a.  Note that (7.12a, b )  imply the expected square-root singularity, 
f cc (z-h); as z 4 h and that 

f n  N Son (z* -+m) (7.13) 

with exponentially vanishing remainders. Substituting (7.12) into (7.1 l ) ,  we obtain 

Fo(k) = - ~ k - ~ { [ & ( r + l ) ] f ~ ~ ~ k h + [ ~ ( r - l ) ] ~ s i n k h } ,  r = (1+k2a2)?, (7.14~) 

Fn(k) = -(krn)-l{[&(rn+n)]i sinkh+[&(r,-n)]; coskh}, r,  = (n2+k2a2)i, 
(7.14 b )  

(7.15a, b )  
Fo(i~) = i ~ - l ( l + ~ a ) i e - ~ ~ ,  F,(~K) = $-l(n+m)-ie-xh. 



170 J .  W .  Miles 

Ka 

Ka 

FIGURE 5 .  (a)  e -2rhXs /2X, ,  as determined in $ 7 ,  for 2a/b = 0.2 (-), 0.4 (-.-) and 0 6  (---) 
with h/a = 1 .  The cross-hatched lines correspond to b = A. ( b )  As in (a ) ,  with h/a = 4. 

The results for the acoustical grating suggest that  truncation of ( 7 . l a )  a t  N = 1 
(two terms) and (7.1 b )  at N = 0 (one term) should provide reasonable accuracy for 
b < A. The corresponding approximations to X ,  and X,, as calculated from (7.8) and 
its odd counterpart, are plotted in figures 5(a ,b )  and 6 ( a , b ) . t  The corresponding 
approximation to IRI2 is less than 0.0014 in the parametric domains of figures 5 and 
6. The inclusion of the additional trial functionf = (h2-z2)- i  for n = 0 was found to 
alter X, by a t  most 0.2% in the parametric domain of figure 5.  Note that X, is 
relatively insensitive to a/b  in the parametric domain of figure 5 (b)  and similarly for 
X, in the parametric domains of figures 6 (a ,  6 )  ; however, some resonance effects must 
be expected as b / A  -, 1.  

t The numerical results presented here required many hours of computer time and various 
analytical and numerical devices for improving the convergence of the infinite integrals. Tt is 
possible that numerical solution of the integral equation@) (5.10) - or, for oblique incidence, 
(2.17) -would be more efficient for extensive calculations; if so, the present results would provide 
important checks for such calculations. 
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K a  

K a  

FIGURE 6. (a )  e -2KhX, /X , ,  as determined in $7 ,  for 2a /b  = 0 2  (--), 0.4 (-.-) and 0.6 (---) with 
h/a  = 1. The cross-hatched line corresponds to b = h for 2a /b  = 0 2 .  (b )  As in (a ) ,  with h/a  = 4. 
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FIGURE 7 .  (a) !PI, as determined from (8 .2b )  using the results from $ 7 ,  for 2a/b = 0.2 (-), 0 4  
(-.-) and 0.6 (---), together with Simon's (1981) result for an isolated duct (. . .), with h /a  = 1 .  
The concave-up portions of the curves for 2a/b = 0 2  and 0 4  presumably signal the approach to 
b = A. ( b )  As in (a ) ,  with h/a = 4. The curve for 2a/b = 0 2  was found to be indistinguishable from 
the result for an isolated duct in 0 < K a  < 0 5 .  

8. Pressure-amplification factor 
The amplification factor for any one of the ducts, defined as the ratio of the complex 

amplitude of the average pressure in the depths of the duct t o  that  of the incident 
wave a t  the centre of the mouth (Knott & Flower 1980, in whose notation P = K ) ,  
is equal to that for the central (n = 0) duct, and is given by 

P = (nuz)-' eKh lim Ilr(r, z )  r dr do ( 8 . 1 ~ )  
Z+cc  0 0 

= eKh lim @(r,z) ( r  < a )  
2+ cc 

= eKh lim x(8,z) .  
2'00 

(8.1 b )  

(8.1 c) 

Note that @ must vanish as z + 00 in r > a (the boundary conditions a t  x = +_ co 
preclude a non-zero value of Ilr in this limit) and, from ( 2 . 5 b ) ,  must tend to a constant 
value as z +co in r < a ,  whence (8.1 c) follows from (8.1 b )  and the definition of x ,  (2.10) 



Xurface-wave diffraction by submerged ducts 173 

1.5 

1 .o 

IP I 

0.5 

C 
1 0.5 

Kalll 

FIGURE 8. IPJ, as determined from ( 8 . 2 b )  using the results from $ 7 ,  compared with Knott  & Flower's 
experimental values (A, x ) for 2a/b = 041 with h / a  = 0.62 (-,a) and 1.34 (---, x ). The 
cross-hatched line corresponds to b = h (there is a A at a / n  = 0.41 and ]PI = 2.2) .  

withn = 0 therein. RelatingX(8, z )  tof(0, z )  through (5.9) and (5 .11)  and invoking (7 .1)  
and (7.13), we obtain 

= eKh (-) X, A,. 
X,+i 

If, as proves to be true, A,  > 0, 

(8.26) 

It is shown in appendix B that P + 1 as K a  + 0 with bja  and h/a fixed. 
The approximation obtained through the substitution of the results from $ 7  into 

(8 .2b)  is plotted in figures 7 (a, b )  and also in figure 8, where it is compared with Knott 
& Flower's measurements. The corresponding approximation to arg P is plotted in 
figure 9. 

Also plotted in figures 7 ( a , b )  is the result for a single duct, which, through a 
modification of the present formulation, is given by 

where 3, is calculated as above after setting S m k n  = 0 in (7 .5)  and D,,  = 0 in (6.9) ; 
note that (2 /Kb)  -i??, is independent of b. A comparison with Simon's numerical results 
(personal communication) suggests that the present approximation tjo IPI is in error 
by about 5% for h /a  = 1 and 1 "/, for h /a  = 4. 
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FIGURE 9. - a r g P  = T,, as determined from (8.3) using the results from $7 ,  for 2a/b = 0 2  (-), 
0 4  ( - .  - )  and 0.6 (---) with h/a = 1. The corresponding values for h/a = 4, which may be 
calculated from the plots in figure 5 ( b ) ,  are smaller (in magnitude) than 1 . 5 O .  

9. Radiation problem 
We turn now to the radiation problem for a duct in a wave tank (or, equivalently, 

a periodic row of ducts in which the forcing motions are in phaset) and for which 
the velocity potential may be posed in the form (cf. (2.3)) 

#(x, y, z ,  t )  = K - ~  Re { VeiWt ~ ( x ,  y, z ) } ,  (9.1) 

where V is the complex amplitude of the vertical velocity in the depths of the duct. 
The dimensionless -complex potential fi is symmetric with respect to z = 0 and 
satisfies (2.4), (2.5a),  

fi N ( Y o - K z )  U ( a - r )  ( z  -+a), (9.2) 

where U is the unit step function [ U ( z )  = 0,1 for :G 5 01, (2.6) a t  r = a (n  = 0), 
and the radiation condition ( b  < h throughout this section) 

+ - Yl e-ixlzl-Kz ( K X  + a). 

The complex parameters Yo and Yl are to be determined. 
(9.3) 

t The present formulation admits an obvious generalization t o  radiation from a periodic row 
of ducts in which the forcing motion exhibits a n  interduct phase shift of the form exp (-in/?), as 
in (2.9a) and (2.14). 
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The impedance of the duct, defined as the ratio of the complex amplitude of the 
perturbation pressure to that of the vertical velocity (positive up) in the depths of 
the duct, is Z = i p w ( z - ~ - ' Y ~ )  (Miles 1982a), where p is the fluid density. The 
corresponding impedance for the motion in r < a, regarded as independent of the 
motion in r > a,  is Z ,  = i p ~ ( z - ~ - l ) ,  whence the radiation impedance is 

z ,  = z-z ,  = ipc(1 -Yo), (9.4) 

where c = W/K is the phase speed of the radiated wave. The real and imaginary parts 
of Z , ,  the radiation resistance pc Im Y o  and the radiation reactance pc( 1 -Re Yo),  
are measures of the radiation damping and virtual mass (or virtual stiffness if 
Re"', > 1 )  of the fluid in r > a ;  ipc is the impedance of the radiated wave. 

The requirement that the energy flux through the duct be equal to that of the 
radiated waves a t  2 = 00 yields (after a straightforward calculation) 

Im Yo = X, lYl12, (9.5) 

where X ,  = b/n-Ka2, as in (6.16) ; (9.5) also may be obtained by applying Green's second 
theorem to + and its complex conjugate (cf. Simon 1981). Similarly, Yl may be 
related to P, the pressure-amplification factor for the diffraction problem, by 
applying Green's theorem to the solutions of the (normal-incidence) diffraction and 
radiation problems (cf. Srokosz 1980; Simon 1981). The end result is 

Yl = iX;l ecKh P, 

Im Yo = X;l e-2Kh IPI2. 

(9.6) 

which may be combined with (9.5) to obtain 

(9.7) 

Thesolutionof(2.4), (2 .5~1,  (2.6), (9.2)and(9.3)maybeposedintheform(cf. (2.15)) 

where (cf. (3.1)) 

U(a-r )Zo( z )  describes the motion in r < a ,  regarded as independent of the motion 
in r > a, x + Z o  is the jump in +across the duct wall ( r  = a ,  z > h) ,  defined as in (2.10), 
j D  signifies integration over the duct, as in (2.16), j A  signifies the corresponding 
integration over the aperture (p = a ,  0 < 6 < h) ,  and G, is the symmetrical part of 
the Green function developed in 94 ; note that, by construction, $ is continuous across 
the aperture. Letting x: t.o in (9.8), using (5.4) to obtain the asymptotic form of C, G,, 
and comparing the result with (9.3), we obtain 

Yl = iKb-'{JA zo(C)-l D ~ ( a , i ) }  ecK5sin(Ka cosa) cosadS. (9.10) 

Separating the real and imaginary parts of X,Gs, the latter being determined by 
(4.11), in (9.8) and invoking (9.10), we obtain 

+ = U ( a - r ) Z o ( z ) + Y l  cosKXe-KZ+i3, Z o ( g ) -  x(a,<) {JA s, I 
x R e  2 G,(r,z;p+nb,<)dX. (9.11) 
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The boundary condition (2.6) then yields the integral equation 

lD H,(B, z ;  a, c) ~ ( c c ,  5) dS = K Y ~  sin (KU cos 8 )  cos 0 e-Kz 

+ J A  H,(@,z ;a ,  5)zo(C)dS (2 > h ) ,  (9.12) 

where H, is defined by (5.6). 
A variational formulation does not appear to offer any significant advantage in 

the present problem ; accordingly, we attack (9.12) directly by Galerkin’s method. 
Comparing (9.12) with (5.10u), we infer that  x must be a linear superposition of Yl fs  
and a component that  is forced by the second term on the right-hand side of (9.12); 
moreover, the latter component is real (x is complex because Y l  is complex, but H,  
and 2, are real). Guided by this consideration, by symmetry, and by the requirements 
x = - 2, = ~ h -  1 a t  z = h (where the pressure jump x + 2, must vanish) and x = O( 1 )  
as z -+m, we pose the solution of (9.12) in the form 

x ( @ , z )  = ~ h - l + Z  (Y1A2,+B,,)f,,(z) cos2n0, (9.13) 

where the A,, andf2,(z) are defined as in $7 (but see below). Substituting (9.13) into 
(9.12), separating out the terms in TI, which cancel by virtue of ( 5 . 1 0 ~ ~ )  and 
(7 .1  a),  multiplying the remaining result through by fim(z) cos 2m0, invoking 
Hs = F-l{H,Z,(g)}, (6.4), (7.4) and (7.5u), and integrating over the duct, we obtain 
the linear algebraic set 

n 

(9.14u, b )  

where X,, is given by (7.4), and X,, is given by (7.4) after replacing JL by Jh and 
F,(k) and F , ( ~ K )  by 

F,(k) = - ~ k - , Z ~ ( h ) ,  F , ( ~ K )  = K - l e - K h .  (9.15q b )  

It should be remarked that Bznfin(z)  in (9.13) could be replaced by Bznqzn(z) ,  where 
{g,(z)} is a set of expansion functions that must satisfy the same basic conditions as, 
but may differ from, { f n ( z ) } ,  in which case X,, in (9.14) would be obtained by 
replacing F, and F, in (7.4) by G, and Gn, and X,. would be obtained by replacing 
F, by G ,  and F, by F*. Further generalization could be effected along the lines of 
the paragraph following (7.8). 

The limiting value of x + Z ,  as z 4 0 3  must be given by (9.2), whence (cf. $8) 

yo = 1 + X O ( ~ ) ,  (9.16) 

where x o ( z )  is the axisymmetric component of x(8 ,z ) .  Substituting (9.13) into (9.16) 
and invoking (7.13), we obtain 

Y o  = K ~ + Y ~ A , + B , .  (9.17) 

Expressing Y ,  and A ,  in terms of P with the aid of (9.6) and the complex conjugate 
of (8 .2b) ,  respectively, substituting B, = 2C0(1 +KU)-$ from (9.14b), ( 7 . 1 5 ~ )  and 
(9.15b), and separating the real and imaginary parts of Yo, we obtain (9.7) and 

Re Yo = ~ h + 2 C ~ ( l  +KU)-?+ ( X , X , ) - 1 e - 2 K h ( P ( 2 .  (9.18) 
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FIGURE 10. (a )  ReY!',, as determined in $9, for 2a/b = 0 2  (---), 0 4  ( - . - )  and 0 6  (---) with 
h / a  = 1. ( b )  As in ( a ) ,  with h / a  = 4. The results for 2a/b = 0.2 and 0 4  are indistinguishable from 
those for 2a/b = 0 6  in Ka < 05  and 1-2 respectively. 



178 J .  W .  Miles 

The approximation to Re 'Po obtained by including the first two terms (2% = 0 , 2 )  
in the Fourier series in (9.13) and using the trial functions (7.12u, b)  for n = 0 , 2  is 
plotted in figure 10. The corresponding approximation to Im Yo may be obtained by 
substituting JPJ from 98 into (9.7). 

The solution of the integral equation (9.12) in the limit KU J 0 may be obtained by 
the procedure outlined in appendix B for the solutions of (5.10u, b ) .  The end results 
are x = Kh- 1 + iX;1 e-Z%h { 1 - e - d - h )  1, (9.19) 

'Po = K h +  iX;l e C Z K h ,  yl = iX;l eCKh (9.20u, b )  
within error factors of 1 +O(K2a2) for each of the real and imaginary parts. 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE77-24005, and by a contract with the Office of 
Naval Research. 

Appendix A. Schlomilch series 
The Schlomilch series 03 

X,(z) = 2 c, K,(lz) 
1-1 

converges exponentially for real values of z ,  but convergence is slow for small z and 
is only conditional for imaginary z. More rapidly converging forms for small or 
imaginary z are given by 

So(z) = n ~ - ~ + l n ~ + F , ( ~ )  477 

(Twersky 1961), where l n y  = 0.577 ... is Euler's constant, 
00 

Fo(x) = { (m2-xX2) -~-m-1 1 
m-1 

= 0 6 0 1 ~ ~  + 0 . 3 8 9 ~ ~  + 0 . 3 1 5 ~ ~  + . . . , (A 3b) 
and? 

22m-l(n+m-1)!B2, (F)2m}+F,,(&) (n  2 1 ) ;  
m=l (2m)! (n-m)! 

B,, are the Bernoulli numbers (B ,  = i, B, = -&, B, = &, . . . )  and 

= [(n+ 1 )  ( & z ) ~  + (n+2)  <(n+ 3) ( g ~ ) ~ + ' +  . . . , (A 5 6 )  

where [(n) is Riemann's zeta function. 

Appendix B. The limit KU J 0 
Letting k a J 0  with kh = O(1) in (5.13), we obtain 

co 
K =  c, K , ~ ~ ~ ~ ( B - - ) ,  

m=o 

S,,(Z) = +in( -)nH,,(iz/2n) in Twersky's (1961) notation. The particular result considered here 
was obtained originally by Ignatowsky ; see Twersky (1961) for references. 
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where, here and subsequently, k = O ( K ) ,  and error factors of 1 + O ( K ~ ~ )  are implicit. 
Invoking (5.6) to obtain H ,  and Ha, substituting the results into (5.10a, b ) ,  letting 
KU J. 0, introducing 

I-W 

((B 3a, b )  and (B 4) are equivalent to ( 7 . l a ,  b )  and ( 7 . 3 )  after absorbing the An in the 
fn(z)), and equating coefficients of cosm6 for m = 0,1 ,2 ,  we obtain 

K~ e c K Z  = F-l{k2FO(k)} = - f : ( z ) ,  (B 5a)  

{ 4 ( k ) )  = ta?fi(z)> (B 5 b )  

V,(k)) = 2a-2fz(z), (B 5 4  

K e - K Z  = 1 -IF-1 

K 2 e - K Z  = za-2F-1 

2a 

where, here and subsequently, z > h is implicit. The corresponding results for m > 2 
are not significant within the present approximation. 

Integrating (B 5a)  and requiring f o  to vanish at z = h (since @ must be continuous) 
and to  be finite a t  z = 00, we obtain 

fo(z) = e--Kh-e--KZ, (B 6 a )  

(B 6 b ,  c )  (B 5b,  f i ( z )  ~ 2 ~ a  e - K Z ,  f z ( z )  = $ ( ~ a ) 2  e-h-2. 

These limiting results are not uniformly valid near z = h, wherefn(z) is singular like 
( z  - h)?. This non-uniformity is more serious forfl and f2 ,  which, in contrast to fo, do 
not vanish at z = h and therefore imply (physically unacceptable) discontinuities in 
the dipole and quadrupole components of @. 

The corresponding limits for X ,  and X,, obtained through (5.15a, b ) ,  are 

X, = 2X, eZKh,  Xa = X ,  ezKh.  (B 7 a , b )  

We remark that (B 7 a )  is the negative of (6.15a), whereas (B 7 b )  is equal to  (6.15b), 
in the singular limit ~h 10. 

A similar analysis may be carried out for KU + 0 with b = O(a).  The results (B 6 a )  
and ( B  7 a )  remain unchanged, although the implicit error factor 1 + O ( K % ~ )  becomes 
1 + O ( K ~ ~ ,  Ka2/b) ;  (B 6 b ,  c) and (B 7 b )  are found to contain factors that  depend on a/b  
and tend to unity as a/b  + 0 ;  cf. (6.17). 

Combining (B 6 a )  and (B 7 a )  in (S . l c ) ,  we obtain 

P+ 1 ( ~ ~ 4 0 ;  !,?fixed), a a  

which generalizes Simon’s (1981) result for an isolated duct. 
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